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Abstract
In the framework of QED, scalar pair production by a single linearly polarized
high-energy photon in the presence of an external Aharonov–Bohm potential
is investigated. The exact scattering solutions of the Klein–Gordon equation in
a cylindrically symmetric field are constructed and used to write the first-order
transition amplitude. The matrix elements and the corresponding differential
scattering cross section are calculated. The pair production at both the
nonrelativistic and the ultrarelativistic limits is discussed.

PACS numbers: 03.65.Ge, 12.20.−m

1. Introduction

Since the pioneering work of Aharonov and Bohm [1] about half a century ago, the systems in
which charged particles interact with the vector potential of an infinitely long, thin magnetic
string (AB potential) are still receiving considerable interest in the literature. In such systems,
the nonlocal interaction of the charged particle with the magnetic field of the string leads,
quantum mechanically, to observable physical effects despite the absence of Lorentz forces
on the particle. The works [2, 3] provide an excellent review of the subject and its application
in various areas.

Recently, works addressing issues other than the elastic scattering of charged particles off
the AB potential have appeared. Serebryanyi et al [4] reported the differential cross section
for bremsstrahlung of nonrelativistic particles in the AB potential in the dipole approximation.
Gal’tsov et al [5] considered the synchrotron radiation by a relativistic scalar particle in the AB
potential. Bremsstrahlung by spin-1/2 particles was considered in [6], and the cross section
for the electron–positron pair production by a single photon in the AB potential was calculated
in [7].

The present work was mainly motivated by the series of works [6–8]. In this paper, we
consider the production of a scalar particle–antiparticle pair in an AB potential by a single,
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linearly polarized photon. The exact differential cross section for the process is calculated
and the limits of low- and high-energy photons are discussed. Selection rules on the angular
momentum of the resulting pair, that were reported for fermions [6, 7], are also revealed in the
scalar case. The framework of our calculations is the covariant perturbation theory. However,
we expand the scalar field operators using, as basis, the exact scattering particle–antiparticle
solutions of the Klein–Gordon (KG) equation in the AB potential, rather than using the free
solutions of the free KG equation as basis as usually done (for the Coulomb potential, for
instance) [9–11]. Such an approach is discussed in [12] and is used in [6, 7]. This, in turn,
makes the lowest non-vanishing contribution to the process of first order rather than second
order. Calculations of the differential cross section of bremsstrahlung and pair production by
a single photon for both scalar and spin one-half particles in the AB potential, using the free
particle solutions as expansion basis, were also carried out [13, 14].

In section 2, we construct the particle and antiparticle solutions of the KG equation with
coupling to the AB potential. The calculation of the differential cross section for the scalar
particle–antiparticle pair by a single, linearly polarized photon is carried out in section 3.
Section 4 discusses the limits for low- and high-energy photons. Finally, we sum up and state
our conclusions in section 5.

2. The exact scattering solutions to the Klein–Gordon equation in the AB potential

In the presence of an external AB vector potential field, Aµ, one should make the use of

the minimal coupling in which the momentum operator
�

P µ → �

P µ − eAµ (with e = −|e|).
Throughout this paper, we will use units in which h̄ = c = 1. In this case, the interacting
Klein–Gordon equation becomes

(
�

P
µ − eAµ)(

�

P µ − eAµ)ψ(�r, t) = M2ψ(�r, t). (1)

In this paper, we will consider only the idealized case (pure AB case) of an infinitesimally thin,
infinitely long straight magnetic tube. In the absence of Coulomb potential and in cylindrical
coordinates described by (ρ, ϕ, z), it can be readily shown that the external vector potential
has only an angular component given by

eAϕ = e�en

2πρ
= −�en

�0ρ
= −f

ρ
(2)

where �en ≡ f �0 is the enclosed magnetic flux through the tube, �0 ≡ −2π/e is the
magnetic flux quantum, ρ =

√
x2 + y2, and f = [f ] + δ with [f ] being the integer part of f

and δ is fractional quantity that produces all physical effects.
Substituting the above vector potential into equation (1), we have[

∂

∂t2
− 1

ρ

∂

∂ρ
ρ

∂

∂ρ
− 1

ρ2

∂2

∂ϕ2
− ∂2

∂z2
+ M2 +

f 2

ρ2
− 2if

ρ2

∂

∂ϕ

]
ψ(�r, t) = 0. (3)

We require ψ(�r, t) to be an eigenfunction of the following operators: the third component of

linear momentum
�

P 3, the third component of the angular momentum
�

L3 and the Hamiltonian
�

H :
�

Hψ(�r, t) = εjψ(�r, t), �

P 3ψ(�r, t) = k3ψ(�r, t) and
�

L3ψ(�r, t) = mψ(�r, t),
(4)

where εj =
√

k2
⊥ + k2

3 + M2 is the energy, j = {k⊥, k3,m} is a collective index with k⊥ being

the component of �k in the x–y plane while k3 and m standing for the eigenvalues of
�

P 3 and
�

L3
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operators, respectively. In other words, {�

P 3,
�

L3,
�

H } constitutes a complete set of commuting
operators that are integrals of the motion. In this ansatz, the partial mode solution for εj > 0,

with normalization constant N, reads

ψ(+)(ρ, ϕ, z; t) = N exp(−i(εj t − k3z − mϕ))Rm(ρ) (5)

where Rm(ρ) obey the following radial KG equation:[
d2

dρ2
+

1

ρ

d

dρ
+ k2

⊥ − (f + m)2

ρ2

]
Rm(ρ) = 0. (6)

Equation (6) is the usual form of Bessel equation of non-integer order m̃± ≡ m ± f . It has
the general positive-energy solutions:

Rm(ρ) = FmJ|m̃+|(k⊥ρ) + GmJ−|m̃+|(k⊥ρ).

Since J±|ν|(x) ∼ x±|ν| for x → 0, Gm must be equal to zero if we insist on the regularity
at the origin. Physically speaking, the irregular solutions must be eliminated since the scalar
particle carries no magnetic moment. As a result, the particle suffers no interaction with the
magnetic field at ρ = 0. In contrast, in the spinor case [15], there is an interaction between the
spin and the magnetic moment. Therefore, the wavefunctions in the latter case do not vanish
at ρ = 0. This leads to the problem of self-adjointness extension of the Hamilton operator
[16–18].

However, the complete set of solutions of the interacting KG equation includes the
negative-energy states ψ(−), in addition to the positive-energy states. These states, are—as
usual—used to construct the antiparticle positive-energy states, described by ψc, through the
charge-conjugation operation, in which ψ(−) → ψc = ψ∗

(−) and replacing e by −e.
The normalization constant N, of the cylindrical partial modes, can be determined by the

following so-called normalization per unit charge,
1

4πM

∫
[ψ∗

j ′ P̂ 4ψj + ψj P̂
∗
4ψ

∗
j ′ ] d3�r = δ(3)(j, j ′), (7)

with P̂ 4 = i∂t , while ψj and ψ∗
j ′ are the partial modes of collective indices j and j ′,

respectively. δ(3)(j, j ′) is the three-dimensional delta function. In cylindrical coordinates,
within a cylindrical surface of length L and volume V , it can be rewritten as

i

4πM

∫ ∞

0

∫ 2π

0

∫ L/2

−L/2
ρ dρ dz dϕ(ψ∗

j ′
↔
∂ tψj ) = δm,m′δ(k3 − k′

3)δ(k⊥ − k′
⊥)√

k⊥k′
⊥

.

This normalization convention says that ψ∗ψ transforms like the zeroth component of a four-
vector, and that

∑
m

∫
k⊥ dk⊥ dk3δ

(3)(j, j ′) = 1. Our choice of normalization implies that the
final answer does not depend on the infinite normalization length in the z-direction.

It can readily be shown that the two normalized independent solutions are now the particle
partial mode solutions, for εj = εa > 0, given by

ψm
(+)(ρ, ϕ, z; t) = √

M/εjL exp(−i(εj t − k3z − mϕ))J|m̃+|(k⊥ρ), (8a)

and the antiparticle partial mode solutions, for εj ′ = εā > 0, given by

ψm′
(−)(ρ, ϕ, z; t) = √

M/|εj ′ | L exp(i(εj ′ t − k′
3z − m′ϕ))J|m̃′−|(k′

⊥ρ). (8b)

The cylindrical partial mode solutions do not describe incoming and outgoing particles with
definite linear momenta at infinity. In order to find out the scattering matrix element, scattering
solutions should be constructed. These solutions can be expressed as linear combinations of
the partial modes of equations 8(a) and (b) as

�a ≡ �out =
∞∑

m=−∞
cmψm

(+)(ρ, ϕ, z; t), (9a)
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�ā ≡ �in =
∞∑

m′=−∞
cm′ψm′

(−)(ρ, ϕ, z; t). (9b)

The coefficients cm are determined by using the fact that � in must behave at large distance
like a plane wave propagating in the direction �k′ plus an outgoing cylindrical wave. Likewise,
cm′ are determined since �out must behave at large distance like a plane wave propagating in
the direction �k plus an incoming cylindrical wave [12]. It must be stressed that the incoming
cylindrical wave of a particle, with angular momentum quantum number m′, can be viewed as
an outgoing cylindrical wave of the corresponding antiparticle.

By making the use of the familiar expansion of plane waves in terms of the Bessel
functions together with the asymptotic form of Bessel functions, it can be shown that the
amplitudes cm and cm′ are given, respectively, by

cm = exp
(

i
{
m(π − ϕ⊥) − π

2
|m̃|

})
and

cm′ = exp
(

i
{
−m′(π − ϕ′

⊥) +
π

2
|m̃′|

})
(10)

where ϕ′
⊥and ϕ⊥ are, respectively, the polar angles subtended by the outgoing momenta as

ρ → ∞.
With this choice of the coefficients for the outgoing particle–antiparticle pair, the particle

and antiparticle field operators can be expanded now in terms of the scattering states �a and
�ā in a correct way [6–8, 12].

3. The matrix-element calculations

In order to calculate the matrix element for the production of a pair of massive particles by an
incident high-energy massless particle such as the photon, it is necessary to find out, first of
all, the probability amplitude given by [19]

�d = 1

2Mc

∫
d3r ei�κ·�r([��P ∗�a∗(�r)]�ā(�r) + �a∗(�r)[��P �ā(�r)]) (11)

where
��P = −i �∇ − e �A is the generalized momentum operator vector. �a(�r) and �ā(�r)

are the time-independent scattering wavefunctions of the outgoing particle and antiparticle,
respectively, and given by

�a(ρ, ϕ, z) = √
M/εjL eik3z

m=∞∑
m=−∞

cm eimϕJ|m+f |(k⊥ρ),

�ā(ρ, ϕ, z) = √
M/|εj ′ |L e−ik′

3z

m′=∞∑
m′=−∞

cm′ e−im′ϕJ|m′−f |(k′
⊥ρ).

�κ is the wave vector of the incoming photon, expressed in a coordinate system defined in
figure 1(a), such that

�κ · �r = κρ sin ϑκ cos(ϕ − ϕκ) + κz cos ϑκ.

The integrand can be viewed as a coupling of the charged current of the scalar particles to the
external radiation field.

In this paper, a special coordinate system, described in figure 1, will be followed. In the
same figure, two polarization vectors, ê(σ )and ê(π), are also shown that will be used later on.
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(a) (b)

Figure 1. (a) Coordinate system followed for probability amplitude calculation. (b) The two
polarization vectors for the coordinate system with ϑκ = π/2 and ϕκ = 0. The two polarization
vectors and the wave vector �κ are mutually orthogonal.

After extensive manipulations, one gets the probability amplitude vector in the form
�d = d1ê1 + d2ê2 + dzêz (12)

with

d1 = −1

4L
√

εj |εj ′ |
∞∑

m=−∞

∞∑
m′=−∞

cm′c∗
m

∫ L/2

−L/2
dz exp(i(κ3 − k3 − k′

3)z)

∫ ∞

0
ρ dρ

∫ 2π

0
dϕ

× exp(iκ⊥ρ cos(ϕ − ϕκ) − i(m + m′)ϕ){k⊥[(1 − sgn(m̃)) [exp(i(ϕκ − ϕ))

×Y (|m̃| − 1, |m̃′|) + exp(−i(ϕκ − ϕ))Y (|m̃| + 1, |m̃′|)] − (1 + sgn(m̃))

× [exp(i(ϕκ − ϕ))Y (|m̃| + 1, |m̃′|) + exp(−i(ϕκ − ϕ))(|m̃| − 1, |m̃′|)]]
+ k′

⊥[(1 + sgn(m̃′))[exp(−i(ϕκ − ϕ))Y (|m̃|, |m̃′| − 1) + exp(i(ϕκ − ϕ))

×Y (|m̃|, |m̃′| + 1)] − (1 − sgn(m̃′))[exp(−i(ϕκ − ϕ))Y (|m̃|, |m̃′| + 1)

+ exp(i(ϕκ − ϕ))Y (|m̃|, |m̃′| − 1)]}]},

d2 = i

4L
√

εj |εj ′ |
∞∑

m=−∞

∞∑
m′=−∞

cm′c∗
m

∫ L/2

−L/2
dz exp(i(κ3 − k3 − k′

3)z)

∫ ∞

0
ρ dρ

∫ 2π

0
dϕ

× exp(iκ⊥ρ cos(ϕ − ϕκ) − i(m + m′)ϕ){k⊥[(1 − sgn(m̃)) [exp(i(ϕκ − ϕ))

×Y (|m̃| − 1, |m̃′|) − exp(−i(ϕκ − ϕ))Y (|m̃| + 1, |m̃′|)] + (1 + sgn(m̃))

× [exp(−i(ϕκ − ϕ))Y (|m̃| − 1, |m̃′|) − exp(i(ϕκ − ϕ))Y (|m̃| + 1, |m̃′|)]]
+ k′

⊥[(1 + sgn(m̃′))[−exp(−i(ϕκ − ϕ))Y (|m̃|, |m̃′| − 1) + exp(i(ϕκ − ϕ))

×Y (|m̃|, |m̃′| + 1)] − (1 − sgn(m̃′))[exp(i(ϕκ − ϕ))Y (|m̃|, |m̃′| − 1)

+ exp(−i(ϕκ − ϕ))Y (|m̃|, |m̃′| + 1)]}]},
and

dz = 1

2L
√

εj |εj ′ |
∞∑

m=−∞

∞∑
m′=−∞

cm′c∗
m

∫ L/2

−L/2
dz exp(i(κ3 − k3 − k′

3)z)

∫ ∞

0
ρ dρ

×
∫ 2π

0
dϕ exp(iκ⊥ρ cos(ϕ − ϕκ) − i(m + m′)ϕ)(k3 − k′

3)Y (|m̃|, |m̃′|).
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In the above expressions, the Y-functions are products of two Bessel functions,

Y (α, β) ≡ Jα(k⊥ρ)Jβ(k′
⊥ρ). (13)

Calculation of the probability amplitude integrals is a very involved task. First of all,
making the use of the box normalization formalism, integration over the z-coordinate is worked
out from −L/2 to L/2 instead of the usual space from −∞ to ∞. Secondly, integrations over
the ϕ-coordinate has the following general form:

� =
∫ 2π

0
d(ϕ − ϕκ) exp(−{i(m + m′ ± 1)ϕ + κρ sinϑκ cos(ϕ − ϕκ)}). (14)

It can be calculated by making the use of the modified version of Sommerfeld representation
of the Bessel function [20], furnishing a third Bessel function. More details are given in
appendix A. The result, with θ± ≡ (m + m′ ± 1), is

� = 2π exp
(
−iθ±

(
ϕκ − π

2

))
J−θ±(κ⊥ρ). (15)

The remaining ρ-integrals are thus reduced to integrals over three Bessel functions of
different orders and arguments that show algebraic relationships. They are of two types that
can be solved by using tabulated formulae 6.578(3) and 6.522(14) of [21]:∫ ∞

0
xJν(b1x)Jµ(b2x)Jµ+ν(cx) dx = 0 for c > b1 + b2 and b1, b2 > 0. (16a)

∫ ∞

0
xJµ(cx sin η cos ζ )Jν(cx cos η sin ζ )Jµ−ν(cx) dx = 2

πc2
sin(µπ)aµbνD, (16b)

for

c > 0, Re ν > −1, η > 0, ζ <
π

2

where a ≡ sin η

cos ζ
, b ≡ sin ζ

cos η
and D ≡ [cos(η + ζ ) cos(η − ζ )]−1.

In this process, the total energy is conserved as well as the linear momentum along the
magnetic tube (z-direction); only the radial momentum is not conserved and satisfies the
relation

κ⊥ > k⊥ + k′
⊥, (17)

which means that there is an excess of radial momentum, κ⊥ − (k⊥ + k′
⊥), transmitted to the

magnetic tube.
Accordingly, we have to set b1 = k⊥, b2 = k′

⊥ and c = κ⊥ in integrals of the type given
in equation 16(a), and c cos η sin ζ = k⊥, c sin η cos ζ = k′

⊥, c = κ⊥of the type given in
equation 16(b).

Thus, depending on the indices of Bessel functions, the integral can be directly solved,
taking into account the conditions imposed on each integral type as well as the linear
dependence properties of Bessel functions, given by J−n(x) = (−1)nJn(x), for integer n.
Then the sums in the probability amplitude components can be evaluated (after we redefine
the indices such that m̄ ≡ m + [f ], m̄′ ≡ m′ − [f ]) since they reduce to geometric ones. An
example of such a calculation is given in appendix B.

In carrying out these calculations, an interesting selection rule on the orbital angular
momentum quantum numbers m̄ and m̄′ of the emerging particle–antiparticle pair comes up.
An investigation of the conditions after the integrals over the Bessel functions, equations 16(a)
and (b), shows that the pair-production process turns out to be forbidden unless the redefined
quantum numbers m̄ and m̄′of the outgoing particle–antiparticle pair have opposite signs.
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Mathematically speaking, for m̄′ � 0, m̄ < 0 and for m̄′ < 0, m̄ � 0. Therefore, they
have to satisfy the following selection rule:

sgn(m̄ ∗ m̄′) = −1. (18)

This means that the created charged particles need to pass the magnetic string in opposite
direction. This is necessary for the ingoing photon to transmit the excess of its radial
momentum to the string and create the real particle–antiparticle pair from the vacuum. This
result was noted before in the case of spin-1/2 particles [7].

Summing over the redefined indices, the closed form expressions for the probability
amplitude takes now the following form:

�d = Dδk3,−k′
3

exp(i[f ](ϕ′
⊥ − ϕ⊥)) sin πδ√

εj |εj ′ |κ2
⊥

[i{A(eiπδ(ab)δ�+ + e−iπδ(ab)−δ�−)}ê1

+ {B(eiπδ(ab)δ�+ − e−iπδ(ab)−δ�−)}ê2 + {2(k3 − k′
3)

× (eiπδ(ab)δ�+ − e−iπδ(ab)−δ�−)}êz]. (19)

where

�+ ≡ 1

1 − a e−iϕ⊥κ

b e−iϕ′
⊥κ

1 − b e−iϕ′
⊥κ

, �− ≡ a eiϕκ⊥

1 − a eiϕκ⊥

1

1 − b eiϕ′
⊥κ

, (20)

A ≡ k⊥(a − a−1) + k′
⊥(b − b−1), B ≡ k⊥(a − a−1) − k′

⊥(b − b−1), (21)

a(k⊥, k′
⊥, κ⊥) = 2k⊥κ⊥(

k′2
⊥ + κ2

⊥ − k2
⊥
)

+
√

k4
⊥ − 2κ2

⊥
(
k′2
⊥ + k2

⊥
)

+
(
k′2
⊥ − k2

⊥
)2

, (22a)

b(k⊥, k′
⊥, κ⊥) = 2k′

⊥κ⊥(
k′2
⊥ + κ2

⊥ − k2
⊥
)

+
√

k4
⊥ − 2κ2

⊥
(
k′2
⊥ + k2

⊥
)

+
(
k′2
⊥ − k2

⊥
)2

, (22b)

D = κ2
⊥ab

k⊥k′
⊥[1 − a2b2]

, (23)

and

ϕij ≡ ϕi − ϕj , (24)

In equation (19), we considered only the case of normal incidence of the incoming photon on
the solenoid, i.e., ϑκ = π/2. This simplifies subsequent calculations without introducing any
loss of generality.

For pair-production process by a single photon of specific energy, the transition probability
per unit time is given by [19]

wjj ′ = 4π2 e2

κL3

∑
j3,j

′
3

( �d∗ · �

a
+
)( �d · �

a)δ(εj + εj ′ − κ) (25)

where the sum is evaluated over the z-components of the momenta of the particles and
antiparticles, respectively. Summation over j3 and j ′

3 can be performed with the help of the
formula [19] ∑

j3,j
′
3

δk3,−k′
3
= L

2π

∫
dk3. (26)

It is clear that the z-components of the momenta of the created emitted pair are equal in
magnitude, but have opposite directions.
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If the amplitudes are expanded in terms of the linear polarization vectors, β̂λ, described
in figure 1 such that

�

βλ =



�

e
(σ) = (−sin ϕκ, cos ϕκ, 0) for λ = 2

�

e
(π) = (−cos ϑκ cos ϕκ,−cos ϑκ sin ϕκ, sin ϑκ) for λ = 3

(27)

then the transition probability per unit time for a given polarization state λ reads

wjj ′,λ = 2π e2

κL2

∫ ∞

−∞
dk′

3 �λδ(εj + εj ′ − κ) (28)

with

�λ = ( �d∗ · β̂λ)( �d · β̂λ). (29)

The calculations will be done with respect to the rotated coordinate system,(x ′, y ′), in which
ϕκ = 0, then ê(σ ) = (0, 1, 0) and ê(π) = (−cos ϑκ, 0, sin ϑκ). In other words, the polarization
vector may be taken to be normal to the plane determined by �κ and ê2 for ê(σ ), while for ê(π)

it must then lie in that plane. For normal incidence, it is not difficult to show that

�(σ) = D2 sin2 πδ

εj εjκ4
A2{(ab)2δ|�+|2 + (ab)−2δ|�−|2 + e2iπδ�+�−∗

+ e−2iπδ�−�+∗ }. (30a)

�(π) = D2 sin2 πδ

εj εjκ4
4(k3 − k′

3)
2{(ab)2δ|�+|2 + (ab)−2δ|�−|2 − e2iπδ�+�−∗ − e−2iπδ�−�+∗ },

(30b)

where

|�+|2 = b2

[1 − 2a cos ϕκ⊥ + a2][1 − 2b cos ϕ′
⊥κ + b2]

, (31a)

and

|�−|2 = a2

[1 − 2a cos ϕκ⊥ + a2][1 − 2b cos ϕ′
⊥κ + b2]

. (31b)

Finally, the complete information about energy, angular and polarization distributions of
created particles and antiparticles is contained in the effective differential cross section given
by

dσλ = L2�(εj , εj ′) dwjj ′ (32)

where

�(εj , εj̄ ) =
(

1

2π

)4

k⊥ dk⊥ dϕ⊥k′
⊥ dk′

⊥ dϕ′
⊥. (33)

Consequently, using equation (28) above, we have

dσλ

dk⊥ dϕ⊥ dk′
⊥ dϕ′

⊥ dk′
3

= e2

8κπ3
k⊥k′

⊥�λ|εj +εj ′=κ , (34)

where �λare given in equations 30(a) and (b). Note that the length L cancels in equation (34),
since dwjj ′ ∝ L−2.

4. Limiting cases

The above differential cross section is of somewhat complicated form. So it is worthwhile to
illustrate limiting cases.
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4.1. Nonrelativistic limit

In this limit, the incident photon energy is just above the threshold energy, i.e., ω − 2M 
 0.

So, κ ∼ 2M and k⊥ ∼ k′
⊥ ∼ k3 ∼ k′

3 � M . Then the nonrelativistic (NR) version of
equations (21)–(23) reduces to

aNR 
 k⊥
κ

= k⊥
2M

, bNR 
 k′
⊥
κ

= k′
⊥

2M
, DNR 
 1,

ANR 
 −2κ = −4M, BNR 
 0.

By substituting the above approximate values, the probability amplitude is considerably
simplified. Its components read

dNR
1 
 −i ei[f ]ϕ⊥′⊥ sin(πδ)

2M3

{(
k⊥k′

⊥
4M2

)δ

k′
⊥ exp(−iϕ⊥′κ + iπδ)

+

(
k⊥k′

⊥
4M2

)−δ

k⊥ exp(−iϕ⊥κ − iπδ)

}
, (35a)

dNR
2 
 0, (35b)

dNR
z 
 k3 ei[f ]ϕ⊥′⊥ sin(πδ)

2M4

{(
k⊥k′

⊥
4M2

)δ

k′
⊥ exp(−iϕ⊥′κ + iπδ) ,

+

(
k⊥k′

⊥
4M2

)−δ

k⊥ exp(−iϕ⊥κ − iπδ)

}
. (35c)

and

�
(σ)
NR 
 sin2(πδ)

4M6

{(
k⊥k′

⊥
4M2

)2δ

k′2
⊥ +

(
k⊥k′

⊥
4M2

)−2δ

k2
⊥

}
,

�
(π)
NR 
 k2

3 sin2(πδ)

4M8

{(
k⊥k′

⊥
4M2

)2δ

k′2
⊥ +

(
k⊥k′

⊥
4M2

)−2δ

k2
⊥

}
.

Eventually,

dσ
(σ)
NR

dk⊥ dϕ⊥ dk′
⊥ dϕ′

⊥ dk′
3


 e2k⊥k′
⊥ sin2(πδ)

(2π)34κM6

{(
k⊥k′

⊥
4M2

)2δ

k′2
⊥ +

(
k⊥k′

⊥
4M2

)−2δ

k2
⊥

}
, (36a)

dσ
(π)
NR

dk⊥ dϕ⊥ dk′
⊥ dϕ′

⊥ dk′
3


 e2k⊥k′
⊥k2

3 sin2(πδ)

(2π)34κM8

{(
k⊥k′

⊥
4M2

)2δ

k′2
⊥ +

(
k⊥k′

⊥
4M2

)−2δ

k2
⊥

}
. (36b)

A remarkable feature of the cross section in the nonrelativistic limit can be read off the
above two equations: unlike the spinor case [7], the differential scattering cross section for the
σ -polarization is much larger than the π -polarization. It is larger by an order that is proportional
to (M/k3)

2 � 1. Physically speaking, it means that it is unlikely that the low-energy π -
polarized photon creates a scalar particle–antiparticle pair but it is created mainly by the
σ -polarized photon.



768 G Y Shahin and M S Shikakhwa

4.2. Ultrarelativistic limit

If the photon energy is much larger than the threshold energy, i.e., κ � 2M, then the created
pair will be emitted predominantly in the forward direction within a too narrow cone about the
direction of the incident photon. This means that the third components of the linear momentum,
k3 and k′

3, of the outgoing pair are very small and can be neglected. In the lowest order

approximation, the pair energy is approximately of kinetic type, i.e., εj ≈
√

k2
3 + k2

⊥ ≈ k⊥ and

εj ′ ≈
√

k′2
3 + k′2

⊥ ≈ k′
⊥.

Accordingly, it is not difficult to conclude that ϕκ
∼=ϕ⊥ ∼= ϕ⊥′ . Then, the angular

distribution of the emitted particle–antiparticle pair, in the ultrarelativistic limit (UR) is
simplified considerably. In this limit, we have aUR 
 2k

κ
, bUR 
 2k′

κ
, AUR 
 −κ, DUR 
 4

and

�
(σ)
UR 
 16 sin2 πδ

kk′κ2
(�+)2

{(
4kk′

κ2

)2δ

+
k2

k′2

(
4kk′

κ2

)−2δ

+
2k

k′ cos 2πδ

}
, (37a)

�
(π)
UR 
 (16k3)

2 sin2 πδ

kk′κ4

(
�+

UR

)2

{(
4kk′

κ2

)2δ

+
k2

k′2

(
4kk′

κ2

)−2δ

− 2k

k′ cos 2πδ

}
(37b)

where

�+
UR = �+∗

UR 
 bUR

(1 − bUR)(1 − aUR)
, (38a)

�−
UR = �−∗

UR = aUR

bUR
�+

UR 
 aUR

(1 − bUR)(1 − aUR)
. (38b)

In contrast to the nonrelativistic limit, it can be easily recognized from equations 37(a)
and (b) that in the ultrarelativistic limit the differential cross section for π -polarization is much
smaller than the σ -polarization. It is smaller by an order that is proportional to (k3/κ)2.

5. Conclusions

We have analysed the scalar pair production by a single, high-energy linearly polarized photon
in the presence of AB potential. In this case, photons do not interact directly with the magnetic
field because they cannot penetrate the magnetic string, and the process is due to the interaction
of the charged particle with the AB vector potential, in contrast to the spin-1/2 case where
there is also an interaction with the magnetic field.

The first order differential scattering cross section was calculated within the framework of
time-dependent perturbation theory using, however, the exact solutions of the Klein–Gordon
equation as expansion basis of the field operators. We showed that the process turns out to
be forbidden unless the quantum numbers m̄ and m̄′of the outgoing particle and antiparticle
have opposite signs. This means that the created virtual pair encircles the magnetic string in
opposite directions, in order to be transformed into a real one. In the nonrelativistic limit,
the cross section for the scalar particle–antiparticle pair production by σ -polarized photons
was found to be much greater than that by π -polarized photons. This is in contrast to the
case of spinor particle–antiparticle pair production, where the dominant cross section is that
of π -polarized photons [7].
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Figure 2. Sommerfeld’s representation of the Bessel function.

Appendix A

The ϕ-integral, given in equation (14) has the following general form:

� =
∫ 2π

0
d(ϕ − ϕκ) exp(−i{(m + m′ ± 1)ϕ − κ⊥ρ cos(ϕ − ϕκ)}). (A.1)

Defining new variables, ϕ − ϕκ = χ + π , θ± ≡ m + m′ ± 1 and ϕ̄κ ≡ ϕκ − π
2 , the integral

reduces to

� = exp(−iθ±(ϕκ − π))

∫ π

−π

dχ exp(iθ±χ + iκ⊥ρ cos χ). (A.2)

Next, one can make the use of the Sommerfeld’s representation of the Bessel function of order
ν given by

Jν(z) = eiπν/2

2π

∫
C

dt exp(−iz cos t + iνt), (A.3)

where C is the contour that goes from −π + ξ + i∞ to π + ξ + i∞ with ξ is being a positive
infinitesimal, as illustrated in figure 2.

Eventually, the ϕ-integral can be easily simplified in terms of the Bessel function, with
the result

� = 2π exp
(−iθ±

(
ϕκ − π

2

))
J−θ±(κ⊥ρ). (A.4)

Appendix B

In this appendix, a full sample calculation of the first ρ-integral in d1 component of
equation (12) will be worked out in details.

Let

G1 =
∞∑

m=−∞

∞∑
m′ =−∞

cm′c∗
m exp(−i(m + m′)ϕ̄κ )[1 − sgn(m̃)]

×
∫ ∞

0
ρ dρ

∫ 2π

0
dϕ exp(iκ⊥ρ cos(ϕ − ϕκ) − i(m + m′)ϕ)

× (1 − sgn(m̃)) exp(i(ϕκ − ϕ))Y (|m̃| − 1, |m̃′|).
Using the result of equation (A.4) for the ϕ-integral and equation (13) with α = |m̃| − 1, β =
|m̃′|, then

G1 =
∞∑

m=−∞

∞∑
m′ =−∞

cm′c∗
m exp(−i(m + m′)ϕ̄κ )[1 − sgn(m̃)]

×
∫ ∞

0
ρ dρ J|m̃|−1(k⊥ρ)J|m̃′|(k′

⊥ρ) Jθ+(κ⊥ρ). (B.1)
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Then the summation over indices m and m′ should be redefined as follows:{
m̄ = m + [f ] ⇒ m̃ = m̄ + δ

m̄′ = m′ − [f ] ⇒ m̃′ = m̄′ − δ

}
⇒ m + m′ = m̄ + m̄′. (B.2)

Next, summing over the new indices and partitioning both summations for positive and
negative indices values, it appears that G1 can be partitioned into four terms. These terms will
be designated by the letters T1, T2, T3 and T4, respectively.

G1 =
−1∑

m̄=−∞

−1∑
m̄′=−∞

U(m̄, m̄′) +
−1∑

m̄=−∞

∞∑
m̄′=0

U(m̄, m̄′)

+
∞∑

m̄=0

−1∑
m̄′=−∞

U(m̄, m̄′) +
∞∑

m̄=0

∞∑
m̄′=0

U(m̄, m̄′), (B.3)

where

U(m̄, m̄′) ≡ c∗
m̄′cm̄′ exp(−i(m̄ + m̄′)ϕ̄κ)[1 − sgn(m̄ + δ)]

×
∫ ∞

0
ρ dρJ|m̃|−1(k⊥ρ)J|m̃′|(k′

⊥ρ)Jθ+(κ⊥ρ). (B.4)

First term: T1

T1 =
−1∑

m̄=−∞

−1∑
m̄′=−∞

c∗
m̄cm̄′ exp(−i(m̄ + m̄′)ϕ̄κ )[1 − sgn(m̄ + δ)]

×
∫ ∞

0
ρ dρJ|m̄+δ|−1(k⊥ρ)J|m̄′−δ|(k′

⊥ρ)Jm̄+m̄′+1(κ⊥ρ).

For m̄ < 0 and m̄′ < 0 : |m + δ| = −m̄ − δ, |m̄′ − δ| = −m̄′ + δ.
Making the use of the fact that J−n(x) and Jn(x) are ‘linearly dependent’ for integer index

n, then

T1 = −2 exp(i[f ](ϕ⊥′ − ϕ⊥))

−1∑
m̄=−∞

exp(im̄(ϕ⊥ − ϕκ − π/2))(−1)−m̄

×
−1∑

m̄′=−∞
exp(im̄′(ϕ′

⊥ − ϕκ − π/2))(−1)−m̄′

×
∫ ∞

0
dρ ρJ−m̄−δ−1(k⊥ρ)J−m̄′+δ(k

′
⊥ρ)J−m̄−m̄′−1(κ⊥ρ).

An investigation of the integral in T1 expression shows that it must vanish since it is an integral
of equation 16(a) type, for µ = −m̄− δ −1 and ν = −m̄′ + δ. Therefore, with κ⊥ > k⊥ + k′

⊥,

(−m̄ − δ − 1) + (−m̄′ + δ) = (−m̄ − m̄′ − 1) = µ + ν.

Second term: T2

T2 =
−1∑

m̄ =−∞

∞∑
m̄′=0

c∗
m̄cm̄′ exp(−i(m̄ + m̄′)ϕ̄κ )[1 − sgn(m̄ + δ)]

×
∫ ∞

0
ρ dρ J|m̄+δ|−1(k⊥ρ)J|m̄′−δ|(k′

⊥ρ)Jm̄+m̄′+1(κ⊥ρ).
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It is not difficult to verify that for m̄ < 0 and m̄′ > 0, the above integral is of type equation 16(b)
with ν = −m̄ − δ − 1 and µ = m̄′ − δ for κ⊥ > k⊥ + k′

⊥. Thus,

T2 = 4D

πκ2
⊥

a−δ−1b−δ exp(i[f ](ϕ′
⊥ − ϕ⊥)) exp(−iπδ)

−1∑
m̄=−∞

a−m̄

× exp(im̄(ϕ⊥ − ϕκ − π)) sin[π(m + δ + 1)]
∞∑

m̄′=0

bm̄′
exp(im̄′(ϕ′

⊥ − ϕκ)).

Note that the two summations turn out to be geometric.
∞∑

m̄′=0

bm̄′
exp(im̄′(ϕ′

⊥ − ϕκ)) = 1

1 − b exp(i(ϕ′
⊥ − ϕκ))

.

Likewise,
−1∑

m̄=−∞
a−m̄ exp(im̄(ϕ⊥ − ϕκ − π)) sin[π(m + δ + 1)]

=
−1∑

m̄=−∞
a−m̄ exp(im̄(ϕ⊥ − ϕκ))

(
eiπδ − e−iπδ

2i

)

=
∞∑

�̄ =1

a�̄ exp(−i�̄(ϕ⊥ − ϕκ)) sin πδ = sin πδa exp(−i(ϕ⊥ − ϕκ))

1 − a exp(−i(ϕ⊥ − ϕκ))
,

where we have set �̄ ≡ −m̄. Finally,

T2 = 4D sin πδ

πκ2
⊥

exp(i[f ](ϕ′
⊥ − ϕ⊥))(ab)−δ e−iπδ

× exp(−i(ϕ⊥ − ϕκ))

1 − a exp(−i(ϕ⊥ − ϕκ))

1

1 − b exp(i(ϕ′
⊥ − ϕκ))

. (B.5)

Third term: T3

T3 =
∞∑

m̄=0

−1∑
m̄′=−∞

c∗
m̄cm̄′ exp(−i(m̄ + m̄′))ϕ̄κ [1 − sgn(m̄ + δ)]

×
∫ ∞

0
ρ dρ J|m̄+δ|−1(k⊥ρ)J|m̄′−δ|(k′

⊥ρ) Jm̄+m̄′+1(κ⊥ρ).

For m̄ > 0 and m̄′ < 0 : |m̄ + δ| = m̄ + δ, |m̄′ − δ| = −m̄′ + δ. Also, we have sgn(m̄ + δ) = 1.
Therefore, the third term T3 vanishes.

Fourth term: T4

T4 =
∞∑

m̄ =0

∞∑
m̄′ =0

c∗
m̄cm̄′ exp(−i(m̄ + m̄′))ϕ̄κ [1 − sgn(m̄ + δ)]

×
∫ ∞

0
ρ dρ J|m̄+δ|−1(k⊥ρ)J|m̄′−δ|(k′

⊥ρ)Jm̄+m̄′+1(κ⊥ρ).

For m̄ > 0 and m̄′ > 0 : |m̄ + δ| − 1 = m̄ + δ − 1, |m̄′ − δ| = m̄′ − δ. Also, we have
[sgn(m̄ + δ) − 1] = 0.

Consequently, the fourth term T4 must vanish as well, and only one term survives in the
G1 expression above.
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